PROPERTIES OF DOUBLE CHLORIDES IN THE SYSTEMS ACI/NdCl₃ (ANa-Cs)

H.-J. Seifert, H. Fink and J. Uebach

INORGANIC CHEMISTRY, UNIVERSITY Gh-KASSEL, G.F.R.

The pseudobinary systems $ACl/NdCl_3$ (A = Na-Cs) were reinvestigated by means of DTA. The following double chlorides were found primarily detected compounds are underlined): $Na_3Nd_5Cl_{18}$; K_3NdCl_6 , K_2NdCl_5 , KNd_2Cl_7 ; Rb_3NdCl_6 , Rb_2NdCl_5 , $RbNd_2Cl_7$; Cs_3NdCl_6 , Cs_2NdCl_5 , $CsNd_2Cl_7$.

With a galvanic cell for solid electrolytes the thermodynamic functions of formation from ACl and NdCl₃ together with the free enthalpies of synproportionation from the compounds adjacent in the phase diagrams were measured. They revealed, that only the compounds A_2 NdCl₅ are stable at ambient temperature. All other compounds are existing by a gain of entropy only at higher temperatures.

The crystal structures of the compounds were determined by X-ray analysis on powders: the compounds are isotypic with the analogous double chlorides of La and Ce (A_3 NdCl₆: high-temperature-modification = elpasolite-type; at room-temperature = metastable K_3 MoCl₆-type; A_2 NdCl₅ = K_2 PrCl₅-type; ANd₂Cl₇ = β -KEr₂F₇-type; Na₃Nd₅Cl₁₈ = Na₃La₅Cl₁₈-type). Magnetic susceptibilities in the range from 80 to 300 K were measured with a Gouy-balance.

In continuation of our research work on phase diagrams of pseudobinary systems $ACl/LnCl_3$ (A = Na-Cs; Ln = La [1], Ce [2], Pr [3], now we have investigated the systems $ACl/NdCl_3$. The phase diagrams were elucidated by means of DTA; the thermodynamic stabilities of the existing double chlorides were determined by solution calorimetry and e.m.f.-measurements in galvanic cells with solid electrolytes. Additionally, their magnetic properties and crystal structures were measured.

Experimental

NdCl₃ was prepared by dehydration of NdCl₃ \cdot 6H₂O, yielded by dissolution of Nd₂O₃ (Fa. Ventron, 99.999%) in hydrochloric acid, in an HCl-stream. In the same way the alkali metal chlorides were dried at 500°.

The DTA-measurements were performed in a home-built device for samples (0.5 g) in vacuum-sealed quartz ampoules. Generally heating curves were measured (heating rate: 2 deg min⁻¹).

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest The apparatus used for solution calorimetry was a home-built isoperibolic calorimeter. From the enthalpies of solution, ΔH^1 , the reaction enthalpies, $\Delta H'$, were calculated:

$$\Delta H_{298}^{r} = \{ \Delta H_{298}^{l} (\text{NdCl}_{3}) + n \Delta H_{298}^{l} (\text{ACl}) \} - \Delta H_{298}^{l} (A_{n} \text{NdCl}_{n+3}) \}$$

X-ray-powder patterns: Philips PW 1050/25 goniometer. — High-temperature photos: Simon-Guinier method.

Magnetic measurements: Gouy method at several temperatures in the range from -200 to 100° . Calibration with HgCo(SCN)₄: $x_g = 16.515 \cdot 10^{-6}$ cm³ · g⁻¹ at 18.5°. E.m.f.-measurements: A description of the galvanic cell is given elsewhere [4]. For the formation of the NdCl₃-richest compounds the set-up of the cell was

 $(C + Cl_2)/ACl/A^+$ -conducting diaphragm/NdCl₃ $(+A_nNdCl_{n+3})/(C + Cl_2)$.

The solid electrolytes (compressed disks) were separated by a sintered disk of an A⁺conducting glass powder; for Cs⁺ no suitable material could be found yet. The collected e.m.f. vs. T values were subjected to a linear regression analysis. Temperature range: $300-480^{\circ}$.

Results of the measurements

The phase diagrams

Figure 1 illustrates the results of the DTA investigations. The melting point for NdCl₃ was found at 831°. Na₃Nd₅Cl₁₈ is forming mixed crystals in the temperature range 350-550°. The exact boundaries couldn't be fixed; however, high-temperature X-ray-photos, taken at 450° yielded a range from ~60 to ~75 mol-% NdCl₃: the hexagonal *c*-axis varied from 7.535 to 7.505 Å, whilst the *a*-axis remained constant (a = 4.237 Å). — Older investigations [5] had yielded a purely eutectic system with a non-monotonous (!) liquidus line near 60 mol-% NdCl₃.

The compounds K_3NdCl_6 and K_2NdCl_5 are already known from other authors [5, 6]; the system $RbCl/NdCl_3$ was measured for the first time. In the system $CsCl/NdCl_3$ from older measurements [5, 6] only Cs_3NdCl_6 was known.

Difficulties arose with the compound Cs_2NdCl_5 : it was only formed by annealing a sample for one month at 230°, together with a catalytic amount of water. The same behaviour was found for the decomposition of Rb_3NdCl_6 below 217 °C.

Crystal structures and magnetic moments

The results of X-ray measurements on crystal powders, together with the results of Meyer [7] for some compounds A_2NdCl_5 , are summarized in Table 1. The

J. Thermal Anal. 33, 1988

Fig. 1 The systems ACI/NdCl,

J. Thermal Anal. 33, 1988

5

Compound	Space group	a/pm	b/pm	c/pm	β/grad
H-Cs ₃ NdCl ₆	Fm3m	1172.8(2)			
D-Cs ₃ NdCl ₆	$P2_1/c$	1405.9(4)	823.6(2)	1328.1(3)	107.68(2)
H-Rb ₃ NdCl ₆	Fm3m	1134.3(2)			
D-Rb ₃ NdCl ₆	P2 ₁ /c	1353.4(4)	774.0(3)	1339.8(4)	108.49(2)
K ₃ NdCl ₆	Fm3m	1114.3(1)			
C ₂ NdCl,	Pnma	1369.1(3)	910.2(2)	850.9(2)	
Rb ₂ NdCl ₅ [7]	Pnma	1311.1(3)	891.2(2)	817.5(2)	
K ₂ NdCl ₅ [7]	Pnm	1270.7(3)	874.1(3)	796.9(2)	
CsNd ₂ Cl ₇	Pna2,	1481.8(9)	1662.7(5)	963.6(3)	
RbNd ₂ Cl ₇	Pna21	1464.4(5)	1674.3(4)	943.0(5)	
KNd ₂ Cl ₇	Pna2 ₁	1445.8(4)	1637.1(8)	972.7(5)	
Na ₃ Nd ₅ Cl ₁₈	P6 ₃ /m	753.5(1)		423.7(1)	
NdCl ₃	P6 ₃ /m	739.5(1)		424.1(1)	
NdCl ₃ [10]	P6 ₃ /m	739.6		423.4	

Table 1 Unit cell parameters for neodynium double chlorides

Table 2 Results of magnetic measurements

Compound	C\$3NdCl6	Rb ₃ NdCl ₆	Cs ₂ NdCl ₅	Rb ₂ NdCl ₅	K ₂ NdCl ₅
$\mu_{c.w}/\mu_B - \theta/K$	3.73	3.67	3.72	3.62	3.65
	30	24	16	11	13
Compound	CsNd ₂ Cl ₇	RbNd ₂ Cl ₇	KNd ₂ Cl ₇	Na ₃ Nd ₅ Cl ₁₈	NdCl ₃
$\mu_{c.w}/\mu_B = -\theta/K_{c.w}$	3.71	3.84	3.78	3.87	3.88
	22	23	22 .	27	31

compounds A_3NdCl_6 have high-temperature modifications, crystallizing in the cubic elpasolite type and low-temperature forms with K_3MoCl_6 -structure [8]. The double chlorides ANd_2Cl_7 are isotypic to β -KEr₂F₇ [9]; the compound $NaNd_{1.67}Cl_6$ has a hexagonal unit cell which can be generated from the NdCl₃-structure [10] by substituting each sixth Nd³⁺ by three Na⁺.

For Nd^{3+} $(4f^{3}$ -electrons in ${}^{4}I_{9/12} \rightarrow g = 8/11)$ a magnetic moment $\mu_{eff} = g \cdot \sqrt{J'(J+1)} \cdot \mu_{B} = 3.62 \,\mu_{B}$ is to be expected; the literature value for NdCl₃ [11] is 3.78 μ_{B} , calculated with the Curie-Weiss-law ($\chi_{mol} = C/(T-\theta)$) with $\theta = -31$ K. The own measurements yielded values (Table 2) ranging from 3.6 to 3.9 μ_{B} with $\theta \sim -25$ K.

J. Thermal Anal. 33, 1988

Solution calorimetry and e.m.f.-measurements

The solution enthalpy for NdCl₃ was found to be $-149.5(4) \text{ kJ} \cdot \text{mol}^{-1}$. (Literature: $-147.7 \text{ to} -153.3 \text{ kJ} \cdot \text{mol}^{-1}$). The enthalpies for dissolving the alkaline chlorides in NdCl₃-solution are (kJ $\cdot \text{mol}^{-1}$): CsCl = 18.1(2); RbCl = 17.6(2); KCl = 17.9(1); NaCl = 4.5(1). The results for those compounds, which could be prepared without decomposition products at room temperature together with enthalpies of synproportionation are compiled in Table 3.

Compound	ΔH_{298}^{l}	∆H [{] ₂₉₈	ΔH ² 298	Synprop. from
Cs ₃ NdCl ₆	- 56.3(6)	- 38.9	+ 1.6	CsCl, Cs2NdCl
Cs ₃ NdCl ₆ [12]	- 54.3	- 39.9		· - ·
Cs ₂ NdCl ₅	- 72.8(7)	- 40.5	-28.1	CsCl, Cso, NdCl _{3.5}
1/2 CsNd ₂ Cl ₇	- 128.1(5)	-12.4	- 2.2	Cs ₂ NdCl ₅ , NdCl ₃
Rb ₃ NdCl ₆	- 74.8(8)	-21.9	+21.4	RbCl, Rb2NdCl5
Rb ₂ NdCl ₅	- 71.0(3)	-43.3	- 39.0	RbCl, Rbo.5NdCl3.5
1/2 RbNd ₂ Cl ₇	-136.4(4)	- 4.3	+ 6.5	Rb ₂ NdCl ₅ , NdCl ₃
K ₂ NdCl ₅	- 80.7(3)	- 33.0	- 33.0	KCI/NdCl
1/2 KNd,Cl,	- 143.7(2)	+ 3.2	+ 11.5	K, NdCl., NdCl.
1/5 Na3Nd5Cl18	- 153.3(6)	+ 6.5	+ 6.5	NaCl/NdCl3

Table 3 Solution enthalpies ΔH^1 and related enthalpy values, kJ·mol⁻¹

 ΔH^f = reaction enthalpies from ACl+NdCl₃; ΔH^s = Synproportionation enthalpies from the neighbour compounds, stable at 298 K.

The e.m.f. values were measured for the formation of the compounds from ACI (with A = K, Rb) and neighbouring compounds richer in NdCl₃. (For K₂NdCl₅ only the formation from NdCl₃ was measured, because KNd₂Cl₇ is stable only in a small temperature range from 469 to 493°.) The regression line was transformed to the Gibbs-Helmholtz-equation $\Delta G^r = \Delta H^r - T \cdot \Delta S^r$ by multiplication with $-n \cdot F$. By means of thermodynamic cycles, these functions were transformed to those for the reactions $nACl+NdCl_3 = A_nNdCl_{n+3}$, denoted as ΔG^f , ΔH^f and ΔS^f . In Table 4 the energy values ΔG_{298}^f , ΔH_{298}^f and $-(T \cdot \Delta S^f)_{298}$ are compiled in the first three columns. The free enthalpies of synproportionation ΔG^s in the fifth column are calculated for the same reactions as in Table 3. For high-temperature modifications the temperatures of decomposition were calculated by the condition $\Delta G^s = 0 \rightarrow \Delta H^s = T \cdot \Delta S^s$

<u>**Rb**_{0.5}NdCl_{3.5}</u>: Reaction 0.5RbCl+NdCl₃ = Rb_{0.5}NdCl_{3.5} n=0.5e.m.f., mV = 99.46+0.3413 · T, K; $\Delta G^{r} = \Delta G^{f}$, kJ·mol⁻¹ = -4.8-0.0165 · T, K

Compound	$\Delta G^{f} = \Delta H^{f}$	$-(T\cdot \Delta S^f)$	∆H ^f _(calorim.)	ΔGª	$\Delta G^{s} = 0$ at T, K
Rb _{0.5} NdCl _{3.5}	- 9.7 - 4.8	- 4.9	- 4.3	+ 1.8	415 (142 °C)
Rb ₂ NdCl ₅	- 4 7.3 - 4 5.7	- 1.6	-43.3	37.6	1000.000
H-Rb3NdCl6	-33.5 -13.6**	- 19.9		+13.9	664 (391 °C)*
D-Rb3NdCl6	-37.9 -21.6**	- 16.3	- 21.9	+ 9.5	490 (217 °C)
K _{0.5} NdCl _{3.5}	- 3.5 + 1.6	- 5.1	+ 3.2	+ 6.5	732 (459 °C)
K₂NdCl5	-38.5 -35.0	- 3.5	- 33.0	id. ⊿G ^f	
K ₃ NdCl ₆	-10.3 +13.5	- 23.8		+28.3	714 (441 °C)
Na _{0.6} NdCl _{3.6}	+ 1.5 + 5.9	- 4.4	+ 6.5	id. ⊿G ^{.r}	401 (128 °C)

Table 4 Energies of the formation from ACl and NdCl₃ at 298 K and free enthalpies of synproportionation ΔG²₂₉₈ [kJ·mol⁻¹]

* Transition temperature H-Rb₃NdCl₆ \rightarrow D-Rb₃NdCl₆; ** Transition enthalpy: 8.0 kJ · mol⁻¹.

<u>**Rb**</u>₂<u>NdCl</u>₅; Reaction 1.5RbCl+Rb_{0.5}NdCl_{3.5} = Rb₂NdCl₅ n = 1.5e.m.f., mV = $282.57 - 0.0762 \cdot T$, K; $\Delta G'$, kJ · mol⁻¹ = $-40.9 + 0.0110 \cdot T$, K For $2RbCl + NdCl_3 = Rb_2NdCl_5$: ΔG^f , $kJ \cdot mol^{-1} = -45.7 - 0.0055 \cdot T$, K <u> Rb_3NdCl_6 </u>: Reaction $RbCl + Rb_2NdCl_5 = Rb_3NdCl_6$ n = 1a) H-Rb₃NdCl₆ (>644 K): e.m.f., $mV = -332.67 + 0.6346 \cdot T$, K; AG^{*} , $kJ \cdot mol^{-1} = 32.1 - 0.0612 \cdot T, K$ b) D-Rb₃NdCl₆ (<664 K): e.m.f., $mV = -249.53 + 0.5093 \cdot T$, K; ΔG . $kJ \cdot mol^{-1} = 24.1 - 0.0491 \cdot T, K$ $\Delta G_a^r = \Delta G_b^r$ at 664 K (391°); For $3RbCl + NdCl_3 = D - Rb_3NdCl_6$; ΔG^f , $kJ \cdot mol^{-1} = -21.6 - 0.0546 \cdot T$, K $\underline{\mathbf{K}}_{0.5} \underline{\mathbf{NdCl}}_{3.5}$: Reaction 0.5KCL + NdCl₃ = $\mathbf{K}_{0.5} \underline{\mathbf{NdCl}}_{3.5}$ n = 0.5e.m.f., $mV = -32.54 + 0.3527 \cdot T$, K; $\Delta G^{T} = \Delta G^{f}$, kJ·mol⁻¹ = 1.6-0.0170 · T, K <u> K_2 NdCl_5</u>: Reaction 2KCl+NdCl_3 = K_2 NdCl_5 n == 2 e.m.f., mV = 181.18+0.0615 \cdot T, K; $\Delta G' \equiv \Delta G^{f}$, kJ mol⁻¹ = -35.0-0.0199 \cdot T, K <u> K_3 NdCl_6</u>: Reaction KCl + K_2 NdCl₅ = K_3 NdCl₆ n === 1 e.m.f., $mV = -502.63 \pm 0.7035 \cdot T$, K; $\Delta G'$, $kJ \cdot mol^{-1} = 48.5 \pm 0.0679 \cdot T$, K. For $3KCl + NdCl_3 = K_3NdCl_6$: ΔG^f , $kJ \cdot mol^{-1} = 13.5 - 0.0798 \cdot T$, K $\underline{Na}_{0.6}\underline{NdCl}_{3.6}$: Reaction 0.6NaCl + NdCl₃ = Na_{0.6}Nd_{3.6} n=0.6e.m.f., $mV = -102.48 + 0.2545 \cdot T$, K; $\Delta G' = \Delta G^{J}$, $kJ \cdot mol^{-1} = 5.9 - 0.0147 \cdot T$. K.

J. Thermal Anal. 33, 1988

Conclusions

1. The free enthalpies of synproportionation ΔG^{s} in Table 4 indicate, that in the systems with KCl and RbCl only the compounds A₂NdCl₅ are stable at ambient temperature. In the system CsCl/NdCl₃, the compounds Cs₂NdCl₅ and CsNd₂Cl₇ are stable, as can be seen from the enthalpies of synproportionation ΔH^{s} in Table 3.

2. The compounds ANd_2Cl_7 (A = Rb, K) and A_3NdCl_6 are stable only at high temperatures: a loss of (lattice) enthalpy is compensated by a gain in entropy. In the case of the 3:1-compounds this entropy gain is correlated with the formation of isolated [NdCl₆]³⁻-octahedra.

3. In the system NaCl/NdCl₃ a phase Na₃Nd₅Cl₁₈ exists, stable > 128°. It can be considered as a solid solution of NaCl in the NdCl₃-lattice.

* * *

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- 1 H.-J. Seifert, H. Fink and G. Thiel, J. Less-Common Metals, 110 (1985) 159.
- 2 H.-J. Seifert, J. Sandrock and G. Thiel, J. Thermal Anal., 31 (1987) 1309.
- 3 H.-J. Seifert, J. Sandrock and J. Uebach. Z. anorg. allg. Chem., in press.
- 4 H.-J. Seifert, and G. Thiel, J. Chem. Thermodyn., 14 (1982) 1159.
- 5 R. Förthmann, G. Vogel and A. Schneider, Z. anorg. allg. Chem., 367 (1969) 19.
- 6 Sun in'-Chzhu and I. S. Morozov, Z. Neorg. Khim., 3 (1958) 1914.

- 7 G. Meyer and E. Hüttl, Z. anorg. allg. Chem., 497 (1983) 191.
- 8 Z. Amilius, B. van Laar and H. M. Rietveld, Acta Crystalogr., B25 (1969) 400.
- 9 S. Alenoard, Y. Le Fur, M. F. Gorius and M. T. Roux, J. Solid State Chem., 34 (1980) 79.
- 10 W. Zachariasen, J. Chem. Phys., 16 (1948) 254.
- R. A. Sallach and J. D. Corbett, Inorg. Chem., 3 (1964) 993.
- 12 R. Blachnik and D. Selle, Z. anorg. allg. Chem., 454 (1979) 82.

Zusammenfassung — Die pseudobinären Systeme ACl/NdCl₃ (A = Na-Cs) wurden mittels DTA neu untersucht. Folgende Doppelchloride wurden gefunden (erstmalig beschriebene Verbindungen sind unterstrichen): <u>Na₃Nd₅Cl₁₈</u>; K₃NdCl₆, K₂NdCl₅, <u>KNd₂Cl₇</u>; <u>Rb₃NdCl₆</u>, Rb₂NdCl₅, <u>RbNd₂Cl₇</u>; Cs₃NdCl₆, Cs₂NdCl₅, CsNd₂Cl₂.

Mit einer galvanischen Zelle für feste Elektrolyte wurden die thermodynamischen Funktionen für die Bildung aus ACl und NdCl₃ sowie die freien Enthalpien für die Synproportionierung aus den im Zustandsdiagramm benachbarten Verbindungen gemessen. Es zeigte sich, daß nur die Verbindungen A_2 NdCl₅ bei Normaltemperaturen stabil sind. Alle anderen Verbindungen existieren aufgrund von Entropiegewinnen nur bei höheren Temperaturen. Anhand von Röntgen-Pulveraufnahmen wurden die Kristallstrukturen ermittelt. Die Verbindungen sind isotyp zu den entsprechenden Doppelchloriden des Lanthans und Cers (A_3NdCl_6 : Hochtemperaturmodifikationen = Elpasolith-Typ; bei Normaltemperatur metastabil im K_3MoCl_6 -Typ; $A_2NdCl_5 = K_2PrCl_5$ -Typ; $ANd_2Cl_7 = \beta$ -KEr₂F₇-Typ; $Na_3Nd_5Cl_{18} = Na_3La_5Cl_{18}$ -Typ). Mit einer Gouy-Waage wurden die magnetischen Suszeptibilitäten im Temperaturbereich 80-300 K gemessen.

Резюме — Методом ДТА вновь исследованы псевдобинарные системы ACl/NdCl₃, где A = Na— Cs. Были найдены следующие двойные соли хлоридов, из которых впервые обнаруженные соединения подчеркнуты: Na₃Nd₅Cl₁₈, K₃NdCl₆, K₂NdCl₅, KNd₂Cl₇, Rb₃NdCl₆, Rb₂NdCl₅, RbNd₂Cl₇, Cs₃NdCl₆, Cs₂NdCl₅, CsNd₂Cl₇. С помощью гальванические й ячейки на основе твердых электролитов были определены термодинамические функции образования солей, наряду со свободными энтальпиями синпропорционирования из смежных соединений на фазовых диаграммах. Они показали, что при обычной температуре устойчивы только соединения состава A₂NdCl₅. Все остальные соединения с увеличенной энтропией существуют только при более высоких температурах. Кристаллические структуры соединений были определены с помощью порошкового рентгенофазового анализа. Установлено, что все соединения изоморфны с аналогичными двойными хлоридами лантана и церия. Высокотемпературная модификация соединения A₃NdCl₆ является типом елпасолита, а комнатнотемпературная модификация — типом метастабильной K₃MoCl₆. Соединения A₂NdCl₅ — типа K₂PrCl₅, ANd₂Cl₇ — типа β-KEr₂F₇, Na₃Nd₅Cl₁₈ — типа Na₃La₅Cl₁₈. Методом Гуи в области температур 80—300 К были измерены магнитные восприимчивости.